Chapter 3

Risk, Economics, and Environmental Concerns

760,000 deaths/year of children under the age of five caused by diseases linked to poor

sanitation

Dysentery, Cholera and Typhoid (water-borne diseases).

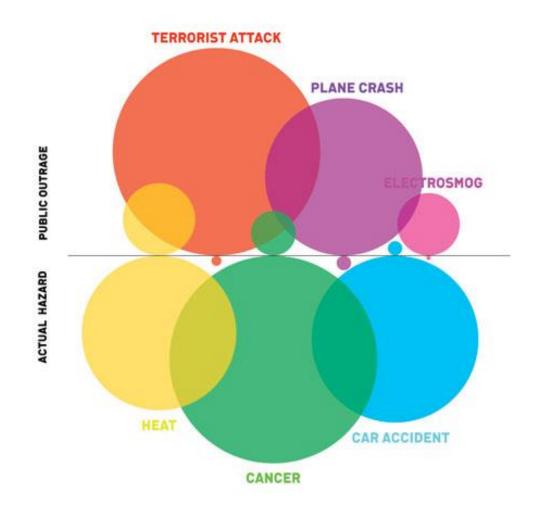
What's the barrier?

Economics: governments with many poor people cannot afford to shift funding to provide water and sanitary facilities.

Risk assessment

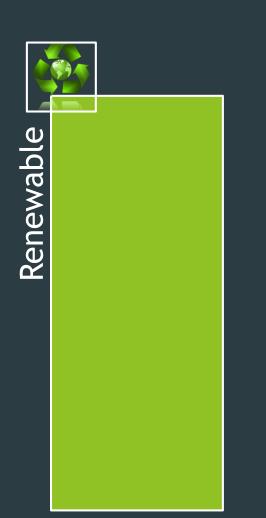
Risk: probability that a condition or action will lead to an injury, damage, or loss.

- Probability: how likely is it?
- Consequences: how catastrophic could a negative outcome be?
- Cost: How much would it cost to deal with a negative outcome?


Risk Management

- Uses risk assessment to make decisions
 - ▶1. Evaluating scientific info.
 - ▶2. Deciding limit of acceptable risk
 - ▶ 3. Deciding priorities
 - ▶4. Best benefit for least \$
 - ▶5. How plan will be enforced and monitored

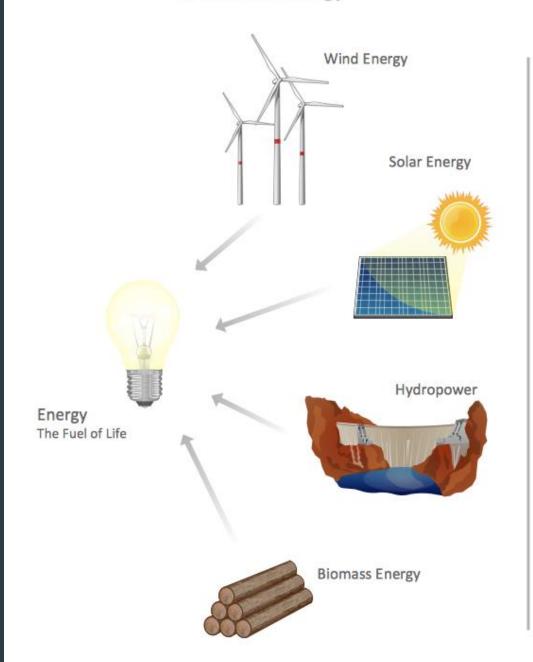
Scientific and public perceptions may not match

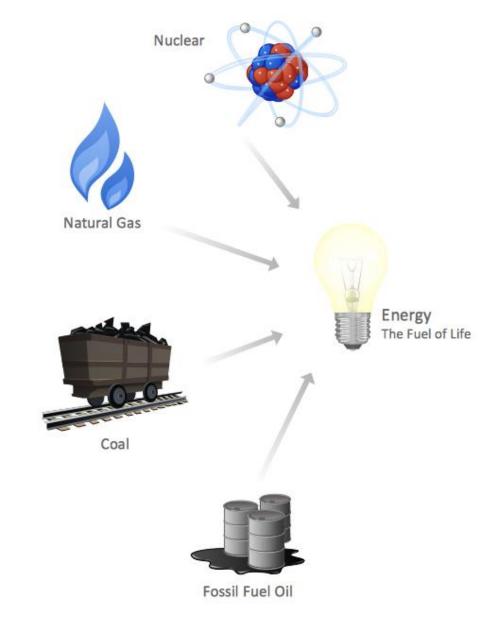

Peter M. Sandman

RISK PERCEPTION AND ACTUAL HAZARDS

Round Table Consensus: Renewable vs. Nonrenewable Resources

- ▶ 1. One piece of paper only
- ▶ 2. One pencil or pen only
- ▶ 3. If all agree, write it
- ▶ 4. Pass paper around




Resources:

- Natural resources: structures and processes that humans can use but cannot create.
- ► Renewable resources: can be formed or regenerated by natural processes (but, can be overused and degraded: soil, water, air).
- Nonrenewable: not replaced by natural processes (iron, fossil fuels etc.)

Renewable Energy

Non-Renewable Energy

Environmental costs

- Difficult to assign dollar value to ecosystem services
- Deferred costs: ignored, not recognized or effects accumulate slowly and need to be paid later. Think of an example.
- ► <u>External costs</u>: responsibility of someone other than who produced or consumed. Example: coal factory built can create jobs but pollution affects public

Opportunity costs: occur when a decision precludes other potential uses

Example: mining on farmland instead of farming.

Pollution: addition of matter of energy that degrades the environment for organisms.

Costs: health care, clean-up, prevention etc.

*Noise Pollution: sound at levels high enough to cause physiological stress and hearing loss

- **Examples of sources**: transportation, construction, domestic and industrial activity.
- Examples of effects on animals: stress, masking of sounds used to communicate or hunt, damaged hearing, changes in migratory routes.

Cost-benefit analysis:

- Calculates the costs and benefits of a project or course of action, to decide if benefits outweigh the costs
- Which act mandates cost benefit analysis for government supported projects?
- Not clear-cut. For example, which is more valuable: A hiking trail or a trail for motor bikes?

Tragedy of the Commons

- With shared ownership, there is a strong tendency to overexploit (think competition)
 - Examples: ocean fishing, minerals, shared pasturelands

Aquaculture: rearing of aquatic animals or the cultivation of aquatic plants for food.

Benefits: Highly efficient, requires small areas of water and little fuel

Drawbacks: Can contaminate wastewater, escaping fish may compete or breed with wild fish, higher density can increase disease which can be transmitted to wild fish.

Sustainable aquaculture

Economic tools to address environmental issues

Subsidies: gift from the government to encourage actions (tax rebates, low-interest loans etc.)

Market-based instruments: allows for choice of solution based on cost of

pollution-causing activity.

Information programs:

Market-based Instruments continued.

- ► Tradable emissions permits: companies allowed to emit certain amounts of pollutants and can sell "extra" or bank them for future.
- Emissions fees and taxes: make it more expensive to be environmentally damaging
- Deposit-refund programs:
- Performance bonds: fees collected and returned after performance standards are met.

Life Cycle Analysis and Extended Product Responsibility

- Life cycle analysis: process of assessing the environmental effects associated with the production, use, and disposal of a product over its life (from materials to disposal).
- Extended product responsibility: producer is responsible for all negative effects all the way to disposal.
 - No US legislation but "take-back" program for batteries etc.

Sustainable Development

- Meets the needs of the present without compromising the ability of future generations to meet their needs.
 - ▶ 1. Renewability: A community must use renewable resources no faster than they can replace themselves.
 - ▶ 2. <u>Substitution</u>: Use renewable instead of nonrenewable whenever possible.
 - ▶ 3. Interdependence: A sustainable community recognizes that it's part of a larger system (attention to imports and exports).
 - ▶ 4. Adaptability: Can adapt and uses research and development.
 - ▶ 5. <u>Institutional commitment</u>: Adopts laws that mandate sustainability.