

Where do we put the waste?

Waste in Space?

1. Cost (\$10,000/kg)
2. Accidents happen
3. Space debris
4. Waste made of natural resources
5. If space is solutionencourages more waste

Waste in ocean?

- Before the 50's, no plastic
- 1988 Ocean Dumping Ban Act (Kids found medical waste on beach - hypodermic needles etc.)
- 1988 Medical Waste Tracking Act
(Now "Cradle to Grave" Monitoring)

WASTING RESOURCES

- Solid waste: any unwanted or discarded material we produce that is not a liquid or gas.
- Municipal solid waste (MSW): produced directly from homes.
- Industrial solid waste: produced indirectly by industries that supply people with goods and services.
- Hazardous (toxic) waste: threatens human health or the environment because it is toxic, chemically active, corrosive or flammable.

Mining Waste

- Rock and soil removed
- Milling operations (to separate target from ore) - tailings
- Water drained into ponds and sometimes leaks out
- Estimated 1-2 billion tons of mining waste/year

Agricultural Waste

- 1,240 metric tons manure/year
- Majority of farm waste used as fertilizer
- Other materials burned
- Run-off risk

Industrial Solid Waste

- 220 mil. - 600 mil. metric tons/year
- Demolition waste, sand, sludge, ash etc.

Municipal Solid Waste

- Household waste, commercial waste, 230 million metric tons/year

Municipal Solid Waste Per Capita of Major Polluters

Electronic Waste:

 A Growing Problem

- E-waste consists of toxic and hazardous waste such as PVC, lead, mercury, and cadmium.
- The U.S. produces almost half of the world's e-waste but only recycles about 10% of it.

Figure 22-4

50 Million metric tons of e-

waste a year

Five Techniques for Waste Disposal 1. Landfills

2. Incineration

 3. Composting 4. Source reduction5. Recycling

Landfills (Open Dumps) "A pile of garbage"

Sanitary Landfills

- Usually constructed above clay
- New landfills have impermeable liner and complex bottom layers to trap leachate
- Methane levels monitored
- Compacted and covered with soil reduces rate and lessons fire danger and decreases odor

New York Garbage Barge Embarrassment

Burying Solid Waste

- Most of the world's MSW is buried in landfills that eventually are expected to leak toxic liquids into the soil and underlying aquifers.
- Open dumps: are fields or holes in the ground where garbage is deposited and sometimes covered with soil. Mostly used in developing countries.
- Sanitary landfills: solid wastes are spread out in thin layers, compacted and covered daily with a fresh layer of clay or plastic foam.

US Landfills

Landfill rules

- No oil
- No antifreeze
- No air conditioner coolant
- No car batteries
- Tires have to be quartered or shredded

Landfill Mining

- Metals etc.
-Reduces demand for mining in nature -Use magnets and conveyer belts

Incineration

- Burning refuse in a controlled manner
- 12% of waste in US
- Used to produce electricity

Incineration

-Backyard burning banned (L.A. saw too much pollution etc.)
-Volume of garbage reduced by 80-90\% but ash is very toxic (dioxins, mercury, cadmium, etc. enter air). Bury remainder in landfill.
-UK burns 90% of waste (in theory, if properly run, CO 2 and H 2 O should be only emissions.

Composting

- Uses natural processes of decomposition
- Compost: humus-like material of decomposed organic material
- Windrow
- Aerated piles
- Enclosed vessels

Benefits

- Aerates the soil.
- Improves soil's ability to retain water and nutrients.
- Helps prevent erosion.
- Prevents nutrients from being dumped in landfills.

Windrow composting

Compostable material in long rows or piles

Turned by tractors

Aerated piles

- Large piles of material aerated by pumps - Covered with insulating material

Enclosed vessels

- Rapid
- Complex

- Environmentally controlled drums or silos

Source Reduction

- Designing, manufacturing, purchasing, using, and reusing materials
- Design changes
- Manufacturing changes
- Purchasing decisions
- Using alternative materials
- Reusing items

Good Examples:

- UCLA: Zero waste by 2020 (compostable or recyclable)
- UCR: Organic Waste Composted 1,663 tons
-Landscape Waste 865 Tons
-Co-mingled recycling 471 Tons
-Paper/Cardboard 48 Tons
-Construction Demolition (reused): 596 Tons
- Solid/Municipal Waste (landfill) 898 Tons
= 83\% Diversion Rate

Design changes

Example: soft drink bottles and milk jugs
Reduced packaging/plastic

Planned Obsolescence

- Some things are designed to fail so that you have to replace them.
- Sometimes they just make a newer model
- Proprietary batteries.

Planned Obsolescence

- Refrigerators
- Cars
- Air Conditioners
- Bikes
- Boats
- Shoes
- Toys
- Food processors
- CD players
- Speakers
- Clothes
- Computers

Manufacturing processes

- Industries reduce waste by limiting leaks, spills and accidents

Purchasing decisions

- Business and consumers can chose to purchase items with reduced packaging.
- Purchase in larger sizes
- Don't over purchase

Using less hazardous

 alternatives- Cleaning products
- Pesticides
- Reduce amounts
- Follow labels

Reuse

- Industry waste exchanges
- "Pay-as-you-throw" programs per disposal instead of flat fee

Recycling

- Conservation of resources by converting them into new product.
- Reduces pollutants
- Saves energy
- Creates jobs
- Reduced use of

- Landfills and incinerators

Problems

- Recycling does have environmental costs.
- It uses energy and generates pollution.
- Ex. the de-inking process in paper recycling requires energy, and produces a toxic sludge that contains heavy metals.'
- Needs a market - subsidies keep prices of raw materials (like trees) low.

Benefits

- Conserves our natural resources
- Has a positive effect on the economy by generating jobs and revenues.
- For example, the Sunday edition of the New York Times consumes 62,000 trees.
- Currently, only about 20% of all paper in North America is recycled.

Glass

- U.S. recycles about 36% of its glass containers.
- It costs less to recycle glass than to make new glass.
- Mixed color glass "cullet" is used for glassphalt, a glass/asphalt mixture.

Aluminum

- This is the most recycled material in the U.S. because of $\$$.
- Making a new can from an old one requires a fraction of the energy than to make a new can from raw materials.
- Approximately $2 / 3$ of cans are recycled each year, saving 19 million barrels of oil annually.

Paper

- U.S. currently recycles 40% of its paper and paperboard.
- Denmark, recycles about 97% of its paper.
- Many U.S. mills are not able to process waste paper.
- Many countries like Mexico, import a large amount of wastepaper from the U.S.
- We export about 19% of our recycled paper.

PLASTICS

\#1 - PET (Polyethylene terephthalate)

- PET is used to make soft drink bottles, peanut butter jars, etc.
- PET can be recycled into fiberfill for sleeping bags, carpet fibers, rope, and pillows.

\#2 - HDPE (High-density polyethylene)

- HDPE is found in milk jugs, butter tubs, detergent bottles, and motor oil bottles.
- HDPE can be recycled into flowerpots, trash cans, traffic barrier cones, and detergent bottles.

\#3 - PVC (Polyvinyl chloride)

- PVC is used in shampoo and cooking oil bottles \& fast-food service items.

\#4 - LDPE (Low-density polyethylene)

- LDPE is found in grocery bags, bread bags, shrink-wrap, and margarine tub tops.
- LDPE can be recycled into new grocery bags.

\#5 - PP (Polypropylene)

- PP is used in yogurt containers, straws, pancake syrup bottles, and bottle caps.
- PP can be recycled into plastic lumber, car battery cases, and manhole steps.

\#6 - PS (Polystyrene)

- PS is found in disposable hot cups, packaging materials (peanuts), \& meat trays
- PS can be recycled into plastic lumber, cassette tape boxes, and flowerpots.

\#7-Other

- A mixture of various plastics, like squeeze ketchup bottles \& "microwaveable" dishes.

Post Consumer Waste

- Some recycled papers are pre-consumer, meaning leftover bits of paper cut off of larger rolls.
- Post-consumer would be actual used office paper

Solutions: Reducing Solid Waste

- Refuse: to buy items that we really don't need.
- Reduce: consume less and live a simpler and less stressful life by practicing simplicity.
- Reuse: rely more on items that can be used over and over.
- Repurpose: use something for another purpose instead of throwing it away.
- Recycle: paper, glass, cans, plastics...and buy items made from recycled materials.

Biomimicry

- Mimic natural chemical cycles
- Interact in complex resource exchange webs (non-linear)

BIOMIMICRY

 design inspiration from nature
Ocean Spray

- Captures methane from nearby landfill to power their plant
- Reduces costs of controlling pollution

Successful Examples

- Patagonia (post consumer recycled fleece, recycled threads program)
- Aveda (recycles caps and bottles)
- 3M
- Xerox
- Subaru
(zero waste factory).

What Can You Do?

Solid Waste

- Follow the five Rs of resource use: Refuse, Reduce, Reuse, Repurpose, and Recycle.
- Ask yourself whether you really need a particular item.
- Rent, borrow, or barter goods and services when you can.
- Buy things that are reusable, recyclable, or compostable, and be sure to reuse, recycle, and compost them.
- Do not use throwaway paper and plastic plates, cups and eating utensils, and other disposable items when reusable or refillable versions are available.
- Refill and reuse a bottled water container with tap water.
- Use e-mail in place of conventional paper mail.
- Read newspapers and magazines online.
- Buy products in concentrated form whenever possible.

